Ohpe dice:
Decir que la luna no está en otro lugar mas lejos ni mas cercano, es no decir nada. Es como decir que yo soy ni mas alto ni mas bajo (que yo mismo), lo que es siempre cierto.
Mi respuesta:
Segun tu, porque la luna esta alli, ¿porque no esta en otro lado?
Tu dices.
Hay lunas de todos los tamaños y a muchas distintas distancias de sus planteas, las tenemos a decenas en unestro sistema solar.
Mi respuesta:
Si pero ademas de esas necesitamos una que este en el lugar que esta.
Tui dices:
La nuestra es un tamaño y una distancia cualquiera, de entre las muchas posibles. Lo que para mi está claro es que la distancia de nuestra Luna no es "la que le corresponde", sino una cualquiera de entre las muchas posibles.
Mi respuesta:
No es una distancia cualquiera porque esta en el lugar correcto.
Tu dices:
Dices que el Sol tiene el tamaño "correcto". ¿Correcto en base a qué? Hay miles de soles de los cuales conocemos su tamaño, y todos los tamaños se me antojan "correctos".
Mi respuesta.
Si esos soles tuvieran el tamaño correcto habria vida, me refiuero a que nuestro sol tiene el tamaño correcto segun el todo., el sitema solar.
El sol puede ser mas grande, pero la tierra deberia ser tambien mas grande, ello tambien haria que la luna fuera mas grande, pero no solo eso sino que deberian de estar mas alejadas, pero segun el tamaño de la tierra, la luna esta con el tamaño correcto asi como el sol tam,bien y estan a las distancias correctas asi como Jupiter con su tamaño y su distancia.
Tu dices:
El abanico de tamaños solares junto a los cuales se estima que la vida es posible, es muy amplio. Hay muchísimos soles en la Via Láctea con un tamaño "correcto" para una posible vida, y el nuestro es uno mas de ellos. Lo que para mi está claro es que el tamaño de nuestro son no es "el que le corresponde", sinó uno cualquiera de entre los muchos posibles. Lo mismo ocurre con la distancia terrestre: el abanico de distancias posibles de un planeta respecto a su sol es considerable, y no hay una única distáncia posible (y "correcta") para que pueda llegar a desarrollar vida, sinó muchas.
Mi respuesta:
No hablamos de posibles, porque es posible que tu sea un orangutan y puedas hablar y escribir y hasta pensar pero eso no es evidencia porque se necesitan pruebas, cuando las haya entonces se dira "un orangutan debate, escribe y hasta piensa".
Tu dices:
De Jupiter... qué decir. Su posición no tiene ninguna trascendencia. Podría estar el doble o el triple de lejos.. no notariamos diferencia. Su tamaño podria ser otro (lo es en Saturno, Urano y Neptuno) .. no notariamos diferencia. Se habla mucho de que nos protege cons su gravedad de impactos de metoritos... pero Mercurio o nuestra Luna (incluso la Tierra) evidencian que millones de meteoritos escapan a Jupiter, peligrosamente para nosotros.
Mi respuesta:
Lo es en saturno, pero Jupiter lo que hace es protegernos de asteoides sino no habria habido vida aqui en la tierra.
No escapana meteritos lo suficiente como para destruir la tierra, sino a lo mucho algunos craters pequeños.
Tu dices:
Total, que todo esto que dices no tiene ningun valor. No hay "un lugar que corresponda" a los cuerpos de nuestro sistema solar.
Mi respuesta.
Segun el tamaño de la tierra si se requiere que los tamaños y distancias del sol, luna planetas esten en su lugar.
La definición que das para "orden" ("
colocación de las cosas en el lugar que les corresponde") solo tiene sentido si previamente alguien ha estipulado cuál es ese lugar, y si el que juzga si las cosas estan "en el lugar que les corresponde" conoce cual es ese lugar.
Mi respuesta:
No necesariamente, si decimos por ejemplo que una computadora tiene varios equipos y todos necesitan el tamaño correcto de cables y extensiones para prenderlas, por lo menos necesitan un tamaño minmo, segun donde esten. En algun lugar pueden tener todas las exensuiones grandes de tal manera que siempre se pueda enchufar los cables y tener prendida las maquinas, pero no deben de ser pequeñas porque sinono funcionartia.
Pero en el caso del que yo te pongo la cosa es todavia mas complicada, porque segun el lugar donde esten se necesitan para la vida en la tierra la distancia correcta, no que sea mas alejada o mas cerca.
Si l atierra es mas pequeñña entonces quizas el sol debia se mas pequeño, pero la luna tambien asi como las distancias mas cortas, claro que eso es posible, pero es un todo, no para hablar de las distancias correctas.
Tu dices:
Yo tengo una colección de libros, y tengo armarios, estanterías, mesas.. Yo decido cual és el lugar que corresponde a los libros (pongamos dentro del armario) y sólo yo mismo o alguien que conozca mi voluntad podrá determinar si realmente los libros están "en el lugar que les corresponde".
Mi respuesta.
No tiene un paralelo comparativo, porque si lo pones donde quieres no hay consecuencias de la misma clase que en el caso de que si se pònde donde sea a la tierra y el sol esta en otro lugar ¿habria vida?
Tu dices:
Si tu vienes a mi casa y ves los libros en la estantería, ¿quién eres tu para juzgar si los libros están "en el lugar que les corresponde"? O si yo quiero tenerlos clasificados por fecha de compra, del mas antiguo al mas moderno, y tu no lo sabes ¿quien eres tu para ordenarme alfabeticamente los libros y decirme que cada uno de ellos está "en el lugar que le corresponde", aunque tu veas orden en ello?
En el sistema solar (y en el universo en general) las cosas no pueden estan ordenadas, porque que nadie estipuló cual era "el lugar que les corresponde". Y si álguien lo hizo, tu no lo sabes. Pretender saber cual es el lugar que corresponde a las cosas que no son tuyas o que no son de nadie es de un egocentrismo tremendo, yo diria que casi insolente.
Me temo que según la definición que das de "orden" ("
colocación de las cosas en el lugar que les corresponde") debemos concluir que NO TENEMOS NI IDEA de si el universo está o no está ordenado. O buscar otra definición de "orden", claro.
Mi respuesta:
Citare algunos puntos importantes del un tal Hugh Ross.
<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves/> <w:TrackFormatting/> <w:HyphenationZone>21</w:HyphenationZone> <w

unctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w

oNotPromoteQF/> <w:LidThemeOther>ES</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w

ontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w

ontVertAlignCellWithSp/> <w

ontBreakConstrainedForcedTables/> <w

ontVertAlignInTxbx/> <w:Word11KerningPairs/> <w:CachedColBalance/> </w:Compatibility> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="--> <m:smallfrac m:val="off"> <m:dispdef> <m:lmargin m:val="0"> <m:rmargin m:val="0"> <m:defjc m:val="centerGroup"> <m:wrapindent m:val="1440"> <m:intlim m:val="subSup"> <m:narylim m:val="undOvr"> </m:narylim></m:intlim> </m:wrapindent><!--[endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/> <w:LsdException Locked="false" Priority="39" Name="toc 1"/> <w:LsdException Locked="false" Priority="39" Name="toc 2"/> <w:LsdException Locked="false" Priority="39" Name="toc 3"/> <w:LsdException Locked="false" Priority="39" Name="toc 4"/> <w:LsdException Locked="false" Priority="39" Name="toc 5"/> <w:LsdException Locked="false" Priority="39" Name="toc 6"/> <w:LsdException Locked="false" Priority="39" Name="toc 7"/> <w:LsdException Locked="false" Priority="39" Name="toc 8"/> <w:LsdException Locked="false" Priority="39" Name="toc 9"/> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> <w:LsdException Locked="false" Priority="37" Name="Bibliography"/> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/> </w:LatentStyles> </xml><![endif]--><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:0cm; mso-para-margin-left:17.85pt; mso-para-margin-bottom:.0001pt; text-indent:-17.85pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;} </style> <![endif]--> [FONT="]Hay cuatro bloques constructivos fundamentales que deben ser diseñados "justo a punto" para la vida.
1. Conseguir las moléculas correctas
Para que la vida sea posible, más de cuarenta diferentes elementos deben tener la capacidad de unirse para formar moléculas. La unión molecular depende de dos factores: la magnitud de la fuerza de electromagnetismo y la relación de la masa del electrón a la masa del protón.
Si la fuerza electromagnética fuera significativamente mayor, los átomos se tomarían de los electrones tan fuertemente que no sería posible compartir ningún electrón con otros átomos. Pero si la fuerza electromagnética fuera significativamente menor, los átomos no retendrían ningún electrón y, nuevamente, no ocurriría la compartición de electrones entre átomos que permite que existan las moléculas. Si han de existir más de sólo unos pocos tipos de moléculas, la fuerza electromagnética debe estar balanceada aún más delicadamente.
El tamaño y la estabilidad de las órbitas de los electrones alrededor de los núcleos de los átomos dependen de la relación de la masa del electrón con la masa del protón. A menos que esta relación esté balanceada delicadamente, las uniones químicas esenciales para la química de la vida nunca podrían tener lugar.
2. Conseguir los átomos correctos
Las moléculas de la vida no pueden construirse a menos que estén disponibles cantidades suficientes de los elementos esenciales para la vida. Esto significa que deben poder formarse átomos de distintos tamaños. Para que esto ocurra, debe existir un delicado equilibrio para cada una de las constantes de la física que gobiernan la fuerza nuclear fuerte y débil, la gravedad, y también para los estados de energía de base del núcleo (niveles de energía cuánticos que son importantes para la formación de elementos a partir de protones y neutrones) para varios elementos clave.
En el caso de la fuerza nuclear fuerte (la fuerza que gobierna el grado en que los protones y neutrones se unen entre sí en los núcleos atómicos) el equilibrio es fácil de ver. Si esta fuerza fuera demasiado débil, los protones y los neutrones no se mantendrían unidos. En ese caso, existiría un solo elemento en el universo, hidrógeno, porque el átomo de hidrógeno tiene sólo un protón y ningún neutrón en su núcleo. Por otro lado, si la fuerza nuclear fuerte fuera de una intensidad ligeramente mayor que la que observamos en el cosmos, los protones y los neutrones tendrían tal afinidad los unos por los otros que ninguno quedaría solo. Todos se encontrarían unidos a muchos otros protones y neutrones. En tal universo no habría nada de hidrógeno, sino sólo elementos pesados. La química de la vida es imposible sin hidrógeno; también es imposible si el hidrógeno es el único elemento.
¿Qué tan delicado es el equilibrio para la fuerza nuclear fuerte? Si fuera tan sólo un 2% más débil o un 0,3% más fuerte de lo que es en la actualidad, la vida sería imposible en cualquier tiempo y lugar dentro del universo.[/FONT]
[FONT="]{1}[/FONT][FONT="]
¿Estamos considerando solamente la vida como la conocemos? No, estamos hablando de cualquier tipo de química de la vida concebible en toda la extensión del cosmos. Esta condición delicada debe ser cumplida universalmente.
En el caso de la fuerza nuclear débil (la fuerza que gobierna, entre otras cosas, la velocidad de la descomposición radioactiva), si fuera mucho más fuerte de la que observamos, la materia en el universo sería convertida rápidamente en elementos pesados. Pero si fuera mucho más débil, la materia en el universo permanecería en la forma de los elementos más livianos exclusivamente. De una u otra forma, los elementos esenciales para la química de la vida (como el carbono, el oxígeno, el nitrógeno, el fósforo) no existirían para nada o existirían en cantidades muy por debajo de las que se requieren para que se puedan formar todas las sustancias químicas esenciales para la vida. Más aún, a menos que la fuerza nuclear débil estuviera balanceada delicadamente, aquellos elementos esenciales para la vida que son producidos sólo en el núcleo de las estrellas súper-gigantes nunca escaparían de las fronteras de esos núcleos (las explosiones de supernovas se volverían imposibles).[/FONT]
[FONT="]{2}[/FONT][FONT="]
El valor de la fuerza de la gravedad determina cuán calientemente arderán los hornos nucleares en los núcleos de las estrellas. Si la fuerza gravitatoria fuera mayor, las estrellas serían tan calientes que se consumirían en forma relativamente rápida; demasiado rápidamente y demasiado erráticamente para la vida. Además, un planeta capaz de sustentar vida debe ser apoyado por una estrella que sea estable y de combustión prolongada a la vez. Sin embargo, si la fuerza gravitatoria fuera menor, las estrellas nunca se volverían lo suficientemente calientes como para poner en marcha la fusión nuclear. En tal universo no se produciría ningún elemento más pesado que el hidrógeno y el helio.
A fines de la década de 1970 y a principios de la década de 1980, Fred Hoyle descubrió que era necesario un ajuste increíblemente fino de los estados de energías de base del núcleo para el helio, el berilio, el carbono y el oxígeno para que exista cualquier tipo de vida.[/FONT]
[FONT="]{3}[/FONT][FONT="] Los estados de energía de base para estos elementos no pueden ser mayores o menores respecto de cada uno de ellos en más de un 4% sin producir un universo con cantidades insuficientes de oxígeno y carbono para la vida.[/FONT]
[FONT="]{4}[/FONT][FONT="] Hoyle, que ha escrito extensamente en contra del teísmo[/FONT]
[FONT="]{5}[/FONT][FONT="], y especialmente el cristianismo, sin embargo concluyó, basándose en este cuádruple ajuste fino, que "un súper-intelecto ha estado ‘jugando’ con la física, además de la química y la biología."[/FONT]
[FONT="]{6}[/FONT][FONT="]
3. Conseguir los nucleones correctos
Uno debe "jugar" con la física del universo para conseguir suficientes elementos correctos para la vida y, más aún, para conseguir que esos elementos se unan entre sí para formar las moléculas de la vida. Uno debe también hacer un ajuste fino del universo para conseguir la cantidad suficiente de nucleones (protones y neutrones) como para formar los elementos.
En los primeros instantes de la creación, el universo contenía alrededor de diez mil millones y un nucleones por cada diez mil millones de antinucleones. Los diez mil millones de antinucleones aniquilaron los diez mil millones de nucleones, generando una cantidad enorme de energía. Todas las galaxias y estrellas que constituyen el universo de hoy fueron formadas a partir de los nucleones que sobraron. Si el exceso inicial de nucleones por sobre los antinucleones hubiera sido algo menor, no habría habido suficiente materia para que se formen las galaxias, las estrellas y los elementos pesados. Si el exceso hubiera sido algo mayor, las galaxias se hubieran formado, pero se habrían condensado y habrían atrapado la radiación tan eficientemente que ninguna de ellas se habría fragmentado para formar las estrellas y los planetas.
El neutrón es un 0,138% más masivo que el protón. Debido a esta masa adicional, los neutrones requieren apenas algo más de energía para formarse que los protones. Así que, al enfriarse el universo luego del evento creador del big bang, produjo más protones que neutrones – de hecho, unas siete veces más.
Si el neutrón fuera sólo un 0,1% más masivo, quedarían tan pocos neutrones del enfriamiento del big bang que no habría suficiente cantidad como para formar los núcleos de todos los elementos pesados esenciales para la vida. Esta masa adicional del neutrón respecto del protón también determina la velocidad a la que los neutrones se descomponen en protones y los protones en neutrones. Si el neutrón fuera 0,1% menos masivo, se acumularían tantos protones para formar neutrones que todas las estrellas del universo se habrían colapsado rápidamente formando ya sea estrellas neutrónicas o agujeros negros.[/FONT]
[FONT="]{7}[/FONT][FONT="] En consecuencia, para que la vida fuera posible en el universo la masa del neutrón debe tener un ajuste fino mejor que el 0,1%.
Hay otro proceso de descomposición que involucra protones que debe tener un ajuste fino para que exista la vida. Se cree que los protones se descomponen para formar mesones (un tipo de partícula fundamental). Digo "se cree" porque la velocidad de descomposición es tan lenta que los experimentadores aún no han registrado un solo evento de descomposición (el tiempo de descomposición promedio para un único protón supera los 4 x 10<sup>32</sup> años). No obstante, los teóricos están convencidos de que los protones deben descomponerse para formar mesones, y a una velocidad bastante cercana a los límites experimentales actuales. Si los protones se descompusieran más lentamente para formar mesones, el universo hoy no tendría una cantidad suficiente de nucleones para formar las galaxias, estrellas y planetas.[/FONT]
[FONT="]{8}[/FONT][FONT="] Esto se debe a que los factores que determinan esta velocidad de descomposición también determinan la proporción entre nucleones y antinucleones al momento del evento creador. Por lo tanto, si la velocidad de descomposición fuera menor, la cantidad de nucleones habría sido balanceado demasiado estrechamente por la cantidad de antinucleones, lo cual, después del aniquilamiento, habría dejado demasiados pocos nucleones.
Sin embargo, si la velocidad de descomposición de los protones para convertirse en mesones hubiera sido mayor, además del problema de una proporción demasiado grande entre nucleones y antinucleones, también habría el problema adicional desde el punto de vista de mantener la vida. Debido a la tremenda cantidad de energía que se libera en este proceso de descomposición específico, la velocidad de descomposición destruiría o dañaría la vida. Por lo tanto, la velocidad de descomposición no puede ser mayor que la actual.
4. Conseguir los electrones correctos
No sólo debe tener el universo un ajuste fino para tener suficientes nucleones, sino que debe existir un número exacto de electrones. A menos que la cantidad de electrones sea equivalente a la cantidad de protones con una precisión de una parte en 10<sup>37</sup> o mejor, las fuerzas electromagnéticas en el universo habrían superado las fuerzas gravitatorias de tal forma que las galaxias, estrellas y planetas jamás se hubieran formado.
Una parte en 10<sup>37</sup> es un equilibrio tan increíblemente delicado que es difícil de visualizar. La siguiente analogía puede ser de ayuda. Cubra todo el continente norteamericano con monedas de diez centavos de dólar hasta llegar a la luna, una altura de unos 380.000 kilómetros. (En comparación, el dinero para pagar la deuda del gobierno federal de los Estados Unidos cubriría dos kilómetros y medio cuadrados con una profundidad menor de sesenta centímetros de monedas.). Luego, apile monedas de aquí a la luna en mil millones de otros continentes del mismo tamaño que Norteamérica. Pinte una moneda de rojo y mézclela dentro de las mil millones de pilas de monedas. Véndele los ojos a un amigo y pídale que extraiga una moneda. La probabilidad de que tomará la moneda roja es de uno en 10<sup>37</sup>. Y éste es sólo uno de los parámetros que están tan delicadamente balanceados para permitir que se forme la vida.
Cualquiera sea el nivel en el que examinemos los bloques constructivos de la vida (electrones, nucleones, átomos o moléculas), la física del universo debe tener un ajuste fino meticuloso. El universo debe estar construido exactamente para crear los electrones necesarios. Debe ser modelado exquisitamente para producir los protones y los neutrones requeridos. Debe ser fabricado cuidadosamente a fin de obtener los átomos necesarios. A menos que esté diseñado hábilmente, los átomos no podrán ser ensamblados en moléculas lo suficientemente complejas. Un equilibrio tan preciso de todos estos factores está realmente más allá de nuestras capacidades de comprensión. No obstante, con la medición del universo se vuelven aparentes hechos aún más asombrosos.
La expansión del cosmos
El primer parámetro del universo que fue medido fue la velocidad de expansión del universo. Al comparar esta velocidad con la física de formación de las galaxias y las estrellas, los astrofísicos encontraron algo asombroso. Si el universo se expandiera demasiado rápido, la materia se dispersaría tan eficientemente que nada de ella se aglomeraría suficientemente como para formar galaxias. Si no se forma ninguna galaxia, no se forma ninguna estrella. Si no se forma ninguna estrella, no se forma ningún planeta. Si no se forma ningún planeta, no hay lugar para la vida. Por otro lado, si el universo se expandiera demasiado lentamente, la materia se aglomeraría tan eficientemente que toda ella, de hecho todo el universo, colapsaría para formar una masa súper densa antes que ninguna estrella del tipo solar se pudiera formar.
Lo que es aún más asombroso es cuán delicadamente balanceada debe estar esa velocidad de expansión para que exista la vida. No puede diferir de la velocidad real en más de una parte en 10<sup>55</sup>.
Una analogía que todavía no llega a acercarse a describir la naturaleza precaria de este equilibrio sería un millón de lápices todos parados simultáneamente sobre sus puntas, sobre una superficie lisa de vidrio y sin ningún soporte externo.
El modelo del big bang inflacionario para el universo ofrece una explicación física de por qué el universo está colocado en un equilibrio tan delicado en su velocidad de expansión. A medida que las cuatro fuerzas fundamentales de la física (las fuerzas de gravedad, la nuclear fuerte, la nuclear débil y la electromagnética) se separaron una de otra durante la primera fracción de segundo luego del evento creador, es posible tener un breve instante de hiperinflación (que dure sólo 10<sup>–34</sup> segundos) que prácticamente garantiza que el universo más tarde se expandirá a la velocidad que permita que exista la vida. Por supuesto, lo que hace eso es intercambiar un equilibrio exquisito (la velocidad de expansión del cosmos) por otro (los valores de un conjunto de varias constantes de la física).
Además de requerir un ajuste fino exquisito de las fuerzas y de las constantes de la física, la existencia de la vida exige aún más. Exige que las partículas fundamentales, la energía y las dimensiones del espacio-tiempo del universo permitan que el efecto túnel cuántico y la relatividad especial operen exactamente como lo hacen. El efecto túnel cuántico debe funcionar ni más ni menos eficientemente que lo que observamos para que la hemoglobina transporte la cantidad correcta de oxígeno a las células de todas las especies de vertebrados y la mayoría de las especies de invertebrados.[/FONT]
[FONT="]{9}[/FONT][FONT="] De la misma forma, las correcciones relativísticas, ni demasiado grandes ni demasiado pequeñas, son esenciales para que el cobre y el vanadio cumplan sus papeles críticos en el funcionamiento del sistema nervioso y en el desarrollo de los huesos de todos los animales superiores.[/FONT]
[FONT="]{10}[/FONT][FONT="]
La medición de la edad del universo
El segundo parámetro del universo que fue medido fue su edad. Por muchas décadas, los astrónomos y otros se han preguntado por qué, si Dios existe, habría de esperar tantos miles de millones de años para crear la vida. ¿Por qué no lo hizo enseguida? La respuesta es que, dadas las leyes y las constantes de la física que Dios escogió crear, se necesitan entre diez y doce mil millones de años sólo para fundir suficientes elementos pesados en los hornos nucleares de varias generaciones de estrellas gigantes para hacer posible la química de la vida.
La vida no podría ocurrir más temprano en el universo de lo que lo hizo sobre la Tierra. Ni tampoco podría ocurrir mucho más tarde. A medida que el universo envejece, las estrellas como el sol, ubicada en la parte correcta de la galaxia para la vida (ver capítulo 15) y en una fase de combustión nuclear estable, se vuelven más y más excepcionales. Si el universo fuera sólo unos pocos miles de millones de años más antiguo, tales estrellas ya no existirían.
Un tercer parámetro que ya he discutido con cierto detenimiento es la entropía, la degradación de la energía. En el capítulo 3, expliqué la evidencia de que el universo posee una cantidad extrema de entropía específica. Este alto nivel de entropía es esencial para la vida. Sin este nivel, los sistemas tan pequeños como las estrellas y los planetas nunca se formarían. Pero si bien la entropía del universo es extremadamente alta, no podría ser mayor. Si fuera mayor, los sistemas tan grandes como las galaxias nunca se formarían. Las estrellas y los planetas no pueden formarse sin las galaxias.
Las masas de las estrellas
Un cuarto parámetro – otro que es muy sensible – es la relación entre la constante de la fuerza electromagnética y la constante de la fuerza gravitatoria. Si la fuerza electromagnética relativa a la fuerza de gravedad fuera incrementada en sólo una parte en 10<sup>40</sup> sólo se formarían estrellas pequeñas. Y si fuera disminuida en sólo una parte en 10<sup>40</sup> sólo se formarían estrellas grandes. Pero para que la vida sea posible en el universo deben existir tanto las estrellas grandes como las pequeñas. Las estrellas grandes deben existir porque sólo en sus hornos termonucleares se producen la mayoría de los elementos esenciales para la vida. Las estrellas pequeñas, como el sol, deben existir porque sólo las estrellas pequeñas arden durante el tiempo suficiente y en la forma suficientemente estable como para sostener un planeta con vida.[/FONT]
[FONT="]{11}[/FONT][FONT="]
Si volvemos a las pilas de monedas, una parte en 10<sup>40</sup> es equivalente a que una persona vendada, hurgando a través de un billón de pilas de monedas del tamaño de Norteamérica que lleguen hasta la luna, tome una y que, en el primer intento, sea la moneda roja.
A finales de la década de 1980 y a principios de la década de 1990, varias otras características fueron medidas exitosamente. Cada una de estas, también, indicaron un ajuste fino cuidadoso para soportar la vida. Actualmente los investigadores han descubierto veintiséis características que deben tomar valores definidos muy estrechamente para que exista la vida de cualquier tipo. Se provee una lista de estas características y las razones por las que deben ser definidas en forma tan estrecha en la tabla 14.1.
La lista de las características de ajuste fino para el universo sigue creciendo. Los parámetros 24, 25 y 26, por ejemplo, fueron agregados sólo en los últimos meses. Cuanto más precisamente y extensamente los astrónomos miden el universo, más ajuste fino descubren en él. También, como hemos visto para muchas de las características ya medidas, el grado de ajuste fino es completamente asombroso, muy superior a lo que los esfuerzos humanos pueden lograr.
Por ejemplo, tal vez la mejor máquina construida jamás por el hombre sea un flamante detector de ondas de gravedad diseñado por físicos del California Institute of Technology para hacer mediciones con una precisión de una parte en 10<sup>23</sup>. En comparación, tres diferentes características del universo deben tener un ajuste fino mejor que una parte en 10<sup>37</sup> para que exista vida de cualquier tipo (para un comentario de por qué la vida debe estar basada en el carbono, ver la sección "Otro tipo de vida" en las páginas 133 y 134). Mi argumento es que la Entidad que trajo a la existencia al universo debe ser un Ser personal, porque sólo una persona puede siquiera acercarse a un diseño de este grado de precisión. Considere, también, que esta Entidad personal debe ser al menos cien billones de veces más "capaz" que nosotros, los humanos, con todos nuestros recursos.
Tabla 14.1: Evidencias del ajuste fino del universo[/FONT]
[FONT="]{12}[/FONT][FONT="]
Más de una docena de parámetros para el universo tienen que tener valores que caen dentro de rangos definidos estrechamente para que exista vida de cualquier tipo.[/FONT]
- [FONT="]constante de la fuerza nuclear fuerte
si mayor: no se formaría hidrógeno; los núcleos atómicos para la mayoría de los elementos esenciales para la vida serían inestables
si menor: no habría elementos fuera del hidrógeno[/FONT]
- [FONT="]constante de la fuerza nuclear débil
si mayor: demasiado hidrógeno se convertiría en helio en el big bang; por lo tanto, se haría demasiado material de elementos pesados por la combustión de las estrellas; no habría expulsión de elementos pesados de las estrellas
si menor: demasiado poco helio sería producido por el big bang; por lo tanto, se haría demasiado poco material de elementos pesados por la combustión de las estrellas; no habría expulsión de elementos pesados de las estrellas[/FONT]
- [FONT="]constante de la fuerza gravitatoria
si mayor: las estrellas serían demasiado calientes y se consumirían demasiado rápido e irregularmente
si menor: las estrellas serían demasiado frías como para encender la fusión nuclear; por lo tanto, ninguna producción de elementos pesados[/FONT]
- [FONT="]constante de la fuerza electromagnética
si mayor: insuficientes uniones químicas; los elementos más pesados que el boro serían demasiado inestables para la fisión
si menor: insuficientes uniones químicas[/FONT]
- [FONT="]relación entre la constante de la fuerza electromagnética y la constante de la fuerza gravitatoria
si mayor: no habría estrellas menores; por lo tanto, duraciones de vida estelares breves y luminosidades estelares desparejas
si menor: no habría estrellas mayores que 0,8 masas solares; por lo tanto, no habría producción de elementos pesados[/FONT]
- [FONT="]relación entre la masa del electrón y la masa del protón
si mayor: insuficientes uniones químicas
si menor: insuficientes uniones químicas[/FONT]
- [FONT="]relación entre la cantidad de protones y la cantidad de electrones
si mayor: el electromagnetismo predominaría sobre la gravedad, impidiendo la formación de galaxias, estrellas y planetas
si menor: el electromagnetismo predominaría sobre la gravedad, impidiendo la formación de galaxias, estrellas y planetas[/FONT]
- [FONT="]velocidad de expansión del universo
si mayor: no se formarían las galaxias
si menor: el universo se colapsaría antes que se formaran las estrellas[/FONT]
- [FONT="]nivel de entropía del universo
si menor: no se formarían las proto-galaxias
si mayor: no habría condensación de estrellas dentro de las proto-galaxias[/FONT]
- [FONT="]densidad de masa del universo
si mayor: demasiado deuterio a partir del big bang; por lo tanto, las estrellas se consumirían demasiado rápido
si menor: una cantidad insuficiente de helio a partir del big bang; por lo tanto, se formarían demasiados pocos elementos pesados[/FONT]
- [FONT="]velocidad de la luz
si mayor: las estrellas serían demasiado luminosas
si menor: las estrellas no serían lo suficientemente luminosas[/FONT]
- [FONT="]edad del universo
si mayor: no habría estrellas del tipo del sol en una fase de combustión estable en la parte correcta de la galaxia
si menor: las estrellas del tipo del sol en una fase de combustión estable todavía no se habrían formado[/FONT]
- [FONT="]uniformidad inicial de la radiación
si más uniforme: las estrellas, los racimos de estrellas y las galaxias no se habrían formado
si menos uniforme: el universo a esta altura consistiría mayormente de agujeros negros y espacio vacío[/FONT]
- [FONT="]constante de estructura fina (un número que describe la separación de estructura fina de las líneas espectrales)
si mayor: el ADN no podría funcionar; no habría estrellas mayores que 0,7 masas solares
si menor: el ADN no podría funcionar; no habría estrellas menores que 1,8 masas solares[/FONT]
- [FONT="]distancia media entre galaxias
si mayor: se infundiría una cantidad insuficiente de gas en nuestra galaxia como para sustentar la formación de estrellas a lo largo de un tiempo adecuado.
si menor: la órbita del sol se perturbaría demasiado radicalmente[/FONT]
- [FONT="]distancia media entre estrellas
si mayor: la densidad de elementos pesados sería demasiado escasa como para que se formen planetas rocosos
si menor: las órbitas planetarias serían demasiado inestables[/FONT]
- [FONT="]velocidad de descomposición del protón
si mayor: la vida sería exterminada por la liberación de radiación
si menor: el universo contendría una cantidad insuficiente de materia para la vida[/FONT]
- [FONT="]relación entre los niveles de energía nuclear de carbono<sup>12</sup> (C<sup>12</sup>) y oxígeno<sup>16</sup> (O<sup>16</sup>)
si mayor: insuficiente cantidad de oxígeno
si menor: insuficiente cantidad de carbono[/FONT]
- [FONT="]nivel de energía de base del helio<sup>4</sup> He<sup>4
</sup>si mayor: insuficiente cantidad de carbono y oxígeno
si menor: insuficiente cantidad de carbono y oxígeno[/FONT]
- [FONT="]velocidad de descomposición del berilio<sup>8</sup> (Be<sup>8</sup>)
si más lenta: la fusión de elementos pesados generaría explosiones catastróficas en todas las estrellas
si más rápida: no se producirían ningún elemento más pesado que el berilio; por lo tanto, no sería posible la química de la vida[/FONT]
- [FONT="]exceso de la masa del neutrón sobre la masa del protón
si mayor: la descomposición de neutrones arrojaría demasiados pocos neutrones como para la formación de los elementos pesados esenciales para la vida
si menor: la descomposición de neutrones haría que todas las estrellas colapsen rápidamente para convertirse en estrellas neutrónicas o agujeros negros.[/FONT]
- [FONT="]exceso inicial de nucleones por sobre antinucleones
si mayor: demasiada radiación para la formación de planetas
si menor: insuficiente materia para la formación de galaxias o estrellas[/FONT]
- [FONT="]polaridad de la molécula de agua
si mayor: el calor de la fusión y de la vaporización sería demasiado grande para que exista la vida
si menor: el calor de la fusión y de la vaporización sería demasiado pequeño para la existencia de la vida; el agua líquida se volvería un solvente muy pobre para que funcione la química de la vida; el hielo no flotaría, lo cual conduciría a un congelamiento descontrolado[/FONT]
- [FONT="]erupciones de las supernovas
si demasiado cercanas: la radiación exterminaría la vida sobre el planeta
si demasiado lejanas: demasiado pocas cenizas de elementos pesados para la formación de planetas rocosos
si demasiado frecuentes: la vida en el planeta se exterminaría
si demasiado infrecuentes: demasiado pocas cenizas de elementos pesados para la formación de planetas rocosos
si demasiado tardías: la vida en el planeta sería exterminada por la radiación
si demasiado tempranas: demasiado pocas cenizas de elementos pesados para la formación de planetas rocosos[/FONT]
- [FONT="]binarias enanas blancas
si demasiado pocas: demasiado poco flúor para que funcione la química de la vida
si demasiadas: alteración de las órbitas planetarias por la densidad estelar; la vida en el planeta sería exterminada
si demasiado tempranas: insuficiente cantidad de elementos pesados para la producción eficiente de flúor
si demasiado tardías: el flúor es demasiado tardío para la incorporación al proto-planeta[/FONT]
- [FONT="]relación entre la materia exótica y la materia ordinaria
si menor: no se formarían las galaxias
si mayor: el universo colapsaría antes que se pudieran formar estrellas del tipo del sol[/FONT]